3.2.50 \(\int \frac {(f x)^m (a+b \text {arccosh}(c x))}{(d-c^2 d x^2)^3} \, dx\) [150]

3.2.50.1 Optimal result
3.2.50.2 Mathematica [N/A]
3.2.50.3 Rubi [N/A]
3.2.50.4 Maple [N/A] (verified)
3.2.50.5 Fricas [N/A]
3.2.50.6 Sympy [F(-1)]
3.2.50.7 Maxima [N/A]
3.2.50.8 Giac [N/A]
3.2.50.9 Mupad [N/A]

3.2.50.1 Optimal result

Integrand size = 27, antiderivative size = 27 \[ \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^3} \, dx=\frac {(f x)^{1+m} (a+b \text {arccosh}(c x))}{4 d^3 f \left (1-c^2 x^2\right )^2}+\frac {(3-m) (f x)^{1+m} (a+b \text {arccosh}(c x))}{8 d^3 f \left (1-c^2 x^2\right )}-\frac {b c (3-m) (f x)^{2+m} \sqrt {1-c^2 x^2} \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {2+m}{2},\frac {4+m}{2},c^2 x^2\right )}{8 d^3 f^2 (2+m) \sqrt {-1+c x} \sqrt {1+c x}}-\frac {b c (f x)^{2+m} \sqrt {1-c^2 x^2} \operatorname {Hypergeometric2F1}\left (\frac {5}{2},\frac {2+m}{2},\frac {4+m}{2},c^2 x^2\right )}{4 d^3 f^2 (2+m) \sqrt {-1+c x} \sqrt {1+c x}}+\frac {(1-m) (3-m) \text {Int}\left (\frac {(f x)^m (a+b \text {arccosh}(c x))}{d-c^2 d x^2},x\right )}{8 d^2} \]

output
1/4*(f*x)^(1+m)*(a+b*arccosh(c*x))/d^3/f/(-c^2*x^2+1)^2+1/8*(3-m)*(f*x)^(1 
+m)*(a+b*arccosh(c*x))/d^3/f/(-c^2*x^2+1)-1/8*b*c*(3-m)*(f*x)^(2+m)*hyperg 
eom([3/2, 1+1/2*m],[2+1/2*m],c^2*x^2)*(-c^2*x^2+1)^(1/2)/d^3/f^2/(2+m)/(c* 
x-1)^(1/2)/(c*x+1)^(1/2)-1/4*b*c*(f*x)^(2+m)*hypergeom([5/2, 1+1/2*m],[2+1 
/2*m],c^2*x^2)*(-c^2*x^2+1)^(1/2)/d^3/f^2/(2+m)/(c*x-1)^(1/2)/(c*x+1)^(1/2 
)+1/8*(1-m)*(3-m)*Unintegrable((f*x)^m*(a+b*arccosh(c*x))/(-c^2*d*x^2+d),x 
)/d^2
 
3.2.50.2 Mathematica [N/A]

Not integrable

Time = 12.27 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.07 \[ \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^3} \, dx=\int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^3} \, dx \]

input
Integrate[((f*x)^m*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^3,x]
 
output
Integrate[((f*x)^m*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^3, x]
 
3.2.50.3 Rubi [N/A]

Not integrable

Time = 0.84 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {6351, 27, 136, 279, 278, 6351, 136, 279, 278, 6375}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^3} \, dx\)

\(\Big \downarrow \) 6351

\(\displaystyle \frac {(3-m) \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{d^2 \left (1-c^2 x^2\right )^2}dx}{4 d}-\frac {b c \int \frac {(f x)^{m+1}}{(c x-1)^{5/2} (c x+1)^{5/2}}dx}{4 d^3 f}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{4 d^3 f \left (1-c^2 x^2\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(3-m) \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{4 d^3}-\frac {b c \int \frac {(f x)^{m+1}}{(c x-1)^{5/2} (c x+1)^{5/2}}dx}{4 d^3 f}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{4 d^3 f \left (1-c^2 x^2\right )^2}\)

\(\Big \downarrow \) 136

\(\displaystyle \frac {(3-m) \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{4 d^3}-\frac {b c \sqrt {c^2 x^2-1} \int \frac {(f x)^{m+1}}{\left (c^2 x^2-1\right )^{5/2}}dx}{4 d^3 f \sqrt {c x-1} \sqrt {c x+1}}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{4 d^3 f \left (1-c^2 x^2\right )^2}\)

\(\Big \downarrow \) 279

\(\displaystyle \frac {(3-m) \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{4 d^3}-\frac {b c \sqrt {1-c^2 x^2} \int \frac {(f x)^{m+1}}{\left (1-c^2 x^2\right )^{5/2}}dx}{4 d^3 f \sqrt {c x-1} \sqrt {c x+1}}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{4 d^3 f \left (1-c^2 x^2\right )^2}\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {(3-m) \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (1-c^2 x^2\right )^2}dx}{4 d^3}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{4 d^3 f \left (1-c^2 x^2\right )^2}-\frac {b c \sqrt {1-c^2 x^2} (f x)^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {5}{2},\frac {m+2}{2},\frac {m+4}{2},c^2 x^2\right )}{4 d^3 f^2 (m+2) \sqrt {c x-1} \sqrt {c x+1}}\)

\(\Big \downarrow \) 6351

\(\displaystyle \frac {(3-m) \left (\frac {1}{2} (1-m) \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{1-c^2 x^2}dx+\frac {b c \int \frac {(f x)^{m+1}}{(c x-1)^{3/2} (c x+1)^{3/2}}dx}{2 f}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{2 f \left (1-c^2 x^2\right )}\right )}{4 d^3}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{4 d^3 f \left (1-c^2 x^2\right )^2}-\frac {b c \sqrt {1-c^2 x^2} (f x)^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {5}{2},\frac {m+2}{2},\frac {m+4}{2},c^2 x^2\right )}{4 d^3 f^2 (m+2) \sqrt {c x-1} \sqrt {c x+1}}\)

\(\Big \downarrow \) 136

\(\displaystyle \frac {(3-m) \left (\frac {1}{2} (1-m) \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{1-c^2 x^2}dx+\frac {b c \sqrt {c^2 x^2-1} \int \frac {(f x)^{m+1}}{\left (c^2 x^2-1\right )^{3/2}}dx}{2 f \sqrt {c x-1} \sqrt {c x+1}}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{2 f \left (1-c^2 x^2\right )}\right )}{4 d^3}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{4 d^3 f \left (1-c^2 x^2\right )^2}-\frac {b c \sqrt {1-c^2 x^2} (f x)^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {5}{2},\frac {m+2}{2},\frac {m+4}{2},c^2 x^2\right )}{4 d^3 f^2 (m+2) \sqrt {c x-1} \sqrt {c x+1}}\)

\(\Big \downarrow \) 279

\(\displaystyle \frac {(3-m) \left (\frac {1}{2} (1-m) \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{1-c^2 x^2}dx-\frac {b c \sqrt {1-c^2 x^2} \int \frac {(f x)^{m+1}}{\left (1-c^2 x^2\right )^{3/2}}dx}{2 f \sqrt {c x-1} \sqrt {c x+1}}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{2 f \left (1-c^2 x^2\right )}\right )}{4 d^3}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{4 d^3 f \left (1-c^2 x^2\right )^2}-\frac {b c \sqrt {1-c^2 x^2} (f x)^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {5}{2},\frac {m+2}{2},\frac {m+4}{2},c^2 x^2\right )}{4 d^3 f^2 (m+2) \sqrt {c x-1} \sqrt {c x+1}}\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {(3-m) \left (\frac {1}{2} (1-m) \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{1-c^2 x^2}dx+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{2 f \left (1-c^2 x^2\right )}-\frac {b c \sqrt {1-c^2 x^2} (f x)^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {m+2}{2},\frac {m+4}{2},c^2 x^2\right )}{2 f^2 (m+2) \sqrt {c x-1} \sqrt {c x+1}}\right )}{4 d^3}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{4 d^3 f \left (1-c^2 x^2\right )^2}-\frac {b c \sqrt {1-c^2 x^2} (f x)^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {5}{2},\frac {m+2}{2},\frac {m+4}{2},c^2 x^2\right )}{4 d^3 f^2 (m+2) \sqrt {c x-1} \sqrt {c x+1}}\)

\(\Big \downarrow \) 6375

\(\displaystyle \frac {(3-m) \left (\frac {1}{2} (1-m) \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{1-c^2 x^2}dx+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{2 f \left (1-c^2 x^2\right )}-\frac {b c \sqrt {1-c^2 x^2} (f x)^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {m+2}{2},\frac {m+4}{2},c^2 x^2\right )}{2 f^2 (m+2) \sqrt {c x-1} \sqrt {c x+1}}\right )}{4 d^3}+\frac {(f x)^{m+1} (a+b \text {arccosh}(c x))}{4 d^3 f \left (1-c^2 x^2\right )^2}-\frac {b c \sqrt {1-c^2 x^2} (f x)^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {5}{2},\frac {m+2}{2},\frac {m+4}{2},c^2 x^2\right )}{4 d^3 f^2 (m+2) \sqrt {c x-1} \sqrt {c x+1}}\)

input
Int[((f*x)^m*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^3,x]
 
output
$Aborted
 

3.2.50.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 136
Int[((f_.)*(x_))^(p_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), 
x_] :> Simp[(a + b*x)^FracPart[m]*((c + d*x)^FracPart[m]/(a*c + b*d*x^2)^Fr 
acPart[m])   Int[(a*c + b*d*x^2)^m*(f*x)^p, x], x] /; FreeQ[{a, b, c, d, f, 
 m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[n, m]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 279
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^IntP 
art[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPart[p])   Int[(c*x)^m* 
(1 + b*(x^2/a))^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && 
!(ILtQ[p, 0] || GtQ[a, 0])
 

rule 6351
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_ 
.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(f*x)^(m + 1))*(d + e*x^2)^(p + 1)*((a 
 + b*ArcCosh[c*x])^n/(2*d*f*(p + 1))), x] + (Simp[(m + 2*p + 3)/(2*d*(p + 1 
))   Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Simp[ 
b*c*(n/(2*f*(p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]   Int[ 
(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x]) 
^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] & 
& GtQ[n, 0] && LtQ[p, -1] &&  !GtQ[m, 1] && (IntegerQ[m] || IntegerQ[p] || 
EqQ[n, 1])
 

rule 6375
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Unintegrable[(f*x)^m*(d + e*x^2)^p*(a + b*A 
rcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
 
3.2.50.4 Maple [N/A] (verified)

Not integrable

Time = 1.21 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.00

\[\int \frac {\left (f x \right )^{m} \left (a +b \,\operatorname {arccosh}\left (c x \right )\right )}{\left (-c^{2} d \,x^{2}+d \right )^{3}}d x\]

input
int((f*x)^m*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^3,x)
 
output
int((f*x)^m*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^3,x)
 
3.2.50.5 Fricas [N/A]

Not integrable

Time = 0.28 (sec) , antiderivative size = 57, normalized size of antiderivative = 2.11 \[ \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^3} \, dx=\int { -\frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} \left (f x\right )^{m}}{{\left (c^{2} d x^{2} - d\right )}^{3}} \,d x } \]

input
integrate((f*x)^m*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^3,x, algorithm="fricas 
")
 
output
integral(-(b*arccosh(c*x) + a)*(f*x)^m/(c^6*d^3*x^6 - 3*c^4*d^3*x^4 + 3*c^ 
2*d^3*x^2 - d^3), x)
 
3.2.50.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^3} \, dx=\text {Timed out} \]

input
integrate((f*x)**m*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**3,x)
 
output
Timed out
 
3.2.50.7 Maxima [N/A]

Not integrable

Time = 0.72 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.19 \[ \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^3} \, dx=\int { -\frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} \left (f x\right )^{m}}{{\left (c^{2} d x^{2} - d\right )}^{3}} \,d x } \]

input
integrate((f*x)^m*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^3,x, algorithm="maxima 
")
 
output
-integrate((b*arccosh(c*x) + a)*(f*x)^m/(c^2*d*x^2 - d)^3, x)
 
3.2.50.8 Giac [N/A]

Not integrable

Time = 0.30 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.15 \[ \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^3} \, dx=\int { -\frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} \left (f x\right )^{m}}{{\left (c^{2} d x^{2} - d\right )}^{3}} \,d x } \]

input
integrate((f*x)^m*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^3,x, algorithm="giac")
 
output
integrate(-(b*arccosh(c*x) + a)*(f*x)^m/(c^2*d*x^2 - d)^3, x)
 
3.2.50.9 Mupad [N/A]

Not integrable

Time = 3.06 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.07 \[ \int \frac {(f x)^m (a+b \text {arccosh}(c x))}{\left (d-c^2 d x^2\right )^3} \, dx=\int \frac {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,{\left (f\,x\right )}^m}{{\left (d-c^2\,d\,x^2\right )}^3} \,d x \]

input
int(((a + b*acosh(c*x))*(f*x)^m)/(d - c^2*d*x^2)^3,x)
 
output
int(((a + b*acosh(c*x))*(f*x)^m)/(d - c^2*d*x^2)^3, x)